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Thermal fluctuation for the time-dependent Ginzburg-Landau simulation
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Thermal fluctuation for the time-dependent Ginzburg-Landau simulations is considered on the basis of the
ensemble theory and the fluctuation-dissipation relation. The treatment for evaluating the thermal fluctuation
for a nonconserved system is proposed and the formula for the fluctuation is presented. The magnitude of the
fluctuation depends on the coarse-grained volume and the curvature of the free-energy function at thermal
equilibrium. The validity of the formula is verified by numerical simulation.
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I. INTRODUCTION

Computer simulations based on the time-depend
Ginzburg-Landau ~TDGL! approach ~more widely, the
phase-field approach! have been frequently made for unde
standing the formation of microstructures in various kinds
alloys @1–4#, and have successfully reproduced the mic
structures observed experimentally. Therefore, this appro
is regarded as a powerful method for analyzing the trans
mation processes. However, such an approach involves
biguity in evaluating the thermal fluctuation. To the autho
knowledge, treatment of the thermal fluctuation has not b
reported so far; it has been neglected, in particular, for tra
formation from an unstable phase, or arbitrary small val
have been adopted for that from a metastable phase.
cently, we reported the TDGL-simulation study for explai
ing the variant-structure formation in the cubic to tetrago
(fcc-L10) transformation of FePd alloy under stress@5#. As
pointed out in the paper, the thermal fluctuation plays
essential role in the transformation kinetics, and the resul
microstructures in the simulations strongly depend on
magnitude of the thermal fluctuation. Therefore, evaluat
of the thermal fluctuation is necessary to perform the pre
tive simulations.

Before taking up the main subject, we shall briefly sta
the TDGL-simulation method and a problem in the fluctu
tion below. In the TDGL approach for simulating formatio
of microstructures, we divide a system into small partial s
tems as the coarse-grained regions~the volume of each re
gion is denoted asV), define the coarse-grained order p
rameterf(r) at rPV, and use the Ginzburg-Landau fre
energy functional of the following form:

F̂$f%5E drF f „f~r!…1
Ks

2
u¹f~r!u2G , ~1!

wheref „f(r)… is the free-energy function per unit volume
the Landau type andKs is the gradient coefficient which
takes account of the excess energy by interfaces. Then
stochastic TDGL equation for nonconserved system is gi
by

] f~r,t !

] t
52L

d F̂$f%

d f
1u~r,t !, ~2!
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wheret is the time,L is the relaxation rate~coefficient!, and
u refers to the thermal fluctuation. The problem is how
actually evaluate the magnitude of the thermal fluctuationu.
In this paper, we present a formula for evaluating the therm
fluctuation for a nonconserved system. Finally, the valid
of the formula is verified by solving the Langevin equatio

II. FORMULA FOR THE THERMAL FLUCTUATION

We start from the thermal fluctuation on the basis of t
ensemble theory. In thermal equilibrium, the probability f
the state with the internal energyE to occur is given by

P~E!5Z21exp@2bF~E!#, ~3!

with b5(kT)21 (k is Boltzmann’s constant andT is the
temperature! andZ the partition function

Z5(
i

W~Ei !exp~2bEi !5(
i

exp@2bF~Ei !#, ~4!

whereW(Ei) is the number of states in which the intern
energy equalsEi and the summation is performed over alli.
The functionF(E) is defined byF(E)5E2TS(E), where
S(E)5k ln W(E). F(E) has a stochastic meaning, and the
fore, is different from the so-calledfree energydefined by
F52kT ln Z. Hereafter, the functionF(E) is calledthe free-
energy function.

When the size of the system is not extremely sm
exp@2bF(E)# displays a very sharp peak at the ensem
average of the internal energy,^E&; the summation in Eq.~4!
can be approximated by exp@2bF(^E&)#. Consequently, the
free energy is given byF'F(^E&)5^E&2TS(^E&), where
F(^E&) is the minimum among allF(Ei). Therefore,
] F(E)/] E50 must be satisfied atE5^E&, resulting in
] S(^E&)/]^E&51/T in thermal equilibrium.

Here, we consider the fluctuation in the free-energy fu
tion that is caused by the internal energy fluctuation in th
mal equilibrium. When the internal energy is^E&1dE, the
free-energy function is expressed asF(^E&1dE)5(^E&
1dE)2TS(^E&1dE)[F(^E&)1dF. The entropyS is ex-
panded up to the second-order term:
©2001 The American Physical Society01-1
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S~^E&1dE!'S~^E&!1
] S

]^E&
dE1

]2 S

]^E&2

~dE!2

2
. ~5!

Using Eq. ~5! and ] S(^E&)/]^E&51/T, the fluctuation in
the free-energy function,dF, is expressed as

dF'2
T

2

]

]^E& S ] S

]^E& D ~dE!25
~TCV!21

2
~dE!2, ~6!

where CV is the heat capacity, and (TCV)21 indicates the
curvature of the free-energy function atE5^E&. Since the
square average of the internal energy fluctuation in the
nonical distribution is given bŷ(dE)2&5kT2CV , the aver-
age fluctuation̂ dF & is given by

^dF &'
~TCV!21

2
^~dE!2&5

kT

2
. ~7!

We apply the above relation to computer simulatio
based on the TDGL approach. As an example of the Lan
free-energy function, we deal with that for the fcc /L10
order-disorder transition previously reported@5#. Since the
transition is first-order, the free-energy function per unit v
ume is expressed as

f ~f!5a~T2T0!f22bf41cf6, ~8!

wherea, b, andc are positive constants, andT0 is the insta-
bility temperature of the disordered phase; the details of
~8!, e.g., its coefficients are discussed in Sec. III.

Figure 1~a! shows the free-energy function at a tempe
ture ~873 K! below the transition temperatureTt ~923 K!.
The thermal-equilibrium distributionPeq(f) is calculated
using

Peq~f!5C exp@2b f ~f!V#, ~9!

for V51 and 27 (nm3) (C is the normalization constant!,
the results of which are displayed in Fig. 1~b!. Obviously, the
fluctuation of the order parameter changes depending on
size of the coarse-grained volumeV, which indicates the
necessity to clearly define the volume for evaluating the th
mal fluctuation.

At thermal equilibrium, the order parameterf fluctuates
around the equilibrium valuefe(Þ0). The curvature of the
Landau free-energy function atf5fe is denoted asf 9(fe).
Equation~7! indicates that the average magnitude of the fl
tuation in the free-energy functionf (f)V assigned to each
region equalskT/2; we obtain^d( f V)&5(1/2)f 9(fe)V^(f
2fe)

2&V'kT/2; that is,

^~f2fe!
2&V'

kT

f 9~fe!V
. ~10!

Next, we shall derive a formula for the fluctuation in th
kinetic equation such as Eq.~2!. As shown in Fig. 1~b!, the
fluctuation of the physical quantities generally depend on
size of a system. Accordingly, being conscious of the size
06010
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a system, we obtain the fluctuation-dissipation~FD! relation
@6# from the Fokker-Planck equation@7#.

The time variation of a parameterf is assumed to be
governed by the Langevin equation,

] f

] t
52LV

] FV

] f
1u~ t !, ~11!

where the character of the Gaussian thermal fluctuationu is
expressed as follows:̂ u(t)&50, ^u(t1)u(t2)&52Dd(t1
2t2). FV is the free-energy function for the region with th
volumeV in which the parameterf is defined, andLV is the
relaxation rate for the regionV. When the distribution func-
tion is expressed asP(f,t), the Fokker-Planck equation cor
responding to Eq.~11! is given by

] P~f,t !

] t
5S D

]2

] f2
1

L

V

]

] f

] f V

] f D P~f,t !, ~12!

where f V5FV and L/V5LV . If D5(L/V)kT holds, the
thermal-equilibrium distribution, Eq.~9!, holds. The FD re-
lation, D5(L/V)kT, guarantees a solution of Eq.~12! to
lead to the thermal-equilibrium distribution.

Expressing the derivative of the free-energy functional
Eq. ~2!, we obtain

] f~r,t !

] t
52

L

VS ] f V

] f
2KsV¹2f D1u~r,t !. ~13!

FIG. 1. ~a! The free-energy function for a fcc/L10 ordering
system at 873 K. The transition temperatureTt is set at 923 K. The
sign of the order parameter indicates the types ofL10 variants.~b!
Distribution functions for different coarse-grained volume,V
51 (nm3) and 27 (nm3).
1-2
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Note that the volumeV is explicitly displayed in the TDGL
equation. From the FD theorem, the character of the ther
fluctuation is given by

^u~ t !&50, ^u~ t1!u~ t2!&52
L

V
kTd~ t12t2!. ~14!

It is emphasized here that Eq.~14! that involves the volume
V is the appropriate formula for the thermal fluctuationu in
Eqs.~2! or ~13!.

We shall consider the discrete equation with the time
crementDt next. The discrete equation atr corresponding to
Eq. ~13! is written as

f~ t1Dt !5f~ t !2
LDt

V

] f V

] f
1E

t

t1Dt

dsu~s!, ~15!

where the gradient term is omitted. From Eq.~14!, the vari-
ance of the integration of the Gaussian thermal fluctuat
s2(Dt), is calculated as

s2~Dt ![E
t

t1Dt

dsE
t

t1Dt

ds8^u~s!u~s8!&52
LDt

V
kT.

~16!

Equation~16!, which involvesV and Dt explicitly, should
be adopted in the TDGL simulations. The definitions~or
physical limitations! of Dt andV shall be stated below.

First, we address the definition ofDt. Comparing Eqs.
~10! and ~16!, we obtain the following significant relation,

s2~Dt !52 f 9~fe!LDt^~f2fe!
2&V , ~17!

which presents a criterion for definingDt. Suppose thatDt is
set at a value much larger than the relaxation timet
;1/L f 9(fe), the relaxation process that should occur na
rally during Dt is inevitably neglected in the simulation, s
that f(t) becomes out of physically meaningful range, e.
the range shown in the abscissa of Fig. 1~a!. As found from
Eq. ~17!, such a matter can be avoided necessarily when
time increment is chosen so as to satisfyDt<1/2L f 9(fe).
On the other hand, whenDt is quite small, the simulation is
not performed effectively; a lot of iterative calculations a
needed for completing a simulation run. Therefore, it is
propriate thatDt is defined so as to satisfy the relatio
2 f 9(fe)LDt;1, i.e., fors2(Dt) to be of the same order a
^(f2fe)

2&V . Thus, in the TDGL simulations for noncon
served systems, we can adopt the following formulas:

Dt;
1

2L f 9~fe!
, s2~Dt !;

kT

f 9~fe!V
. ~18!

There exists arbitrariness in the determination of
coarse-grained volumeV, but at least, we should take notic
that the volumeV is to be smaller than a typical domain siz
for example, the specific wave length in the spinodal deco
position or the critical nucleation size, etc. In the case
nucleation process, the critical radius of a spherical nucl
is given byr c522gs/ f (fe), wheregs is the surface energy
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given by gs'Ksfe
2/2Dd and (Dd)35V, with Dd the grid

distance of the divided partial systems. If the nucleation p
cess is simulated, the coarse-grained volume should be
fined so as to satisfy a conditionV!(4/3)pr c

3 .

III. VALIDITY OF THE FORMULA FOR THE THERMAL
FLUCTUATION

In this section, we examine the validity of Eq.~18! by
solving Eq.~15! numerically. The term of the gradient en
ergy is not considered here~i.e., Ks50); we observe not the
nucleation process, but the process of overcoming
saddlepoint energyf max shown in Fig. 1~a!. Note thatf max is
the free-energy maximum characterizing the first-order tr
sition and is essentially different from the work required f
the formation of a nucleus. Since the gradient energy is z
~i.e., there is no shrink effect by surface tension! in this
model, even a infinitesimally small domain can stably ex
once it changes into an equilibrium state via the saddlep
from a metastable state. What is checked here is whe
such an activation process can be simulatedphysically cor-
rectly, that is, the activation~saddlepoint! energy for a region
with the volumeV becomes equal tof maxV. The activation
process is analyzed in the light of the conventional theory
the thermal fluctuation.

We use the free-energy function@in the form of Eq.~8!#
per unit volume for the fcc/L10 transition: f (f)
5(RT/Vm)@0.746(kT/v20.708)f220.497f410.475f6#,
wheref represents the tetragonality of theL10 phase,Vm is
the volume per unit mole, andR is the gas constant@5#. In
this phase transition, the reduced transition temperature
been calculated to bekTt /v'0.882 (v is the effective
atomic interaction energy! from Monte Carlo simulations
@8#. We set the parameters:Tt5923 (K) and Vm58.32
31026 @m3/mol#. Temperature for the simulation is set
T5823 (K), i.e., kT/v'0.786. At this temperature, th
saddlepoint energy isf max'1.513106 (J/m3), i.e., b f max
50.133 @nm23#, and the curvature of the free-energy fun
tion is f 9(fe)'1.683109 (J/m3). On the basis of Eq.~18!,
we use LDt'1/2f 9(fe)'2.97310210 (m3/J) and assign
the Gaussian random number with the variances2(Dt)
'6.75310230/V to the thermal fluctuation. The time incre
ment is set atDt51 (s8) (s8 denotes the unit of time use
in the simulation!.

As seen in Fig. 2~a!, the parameterf fluctuates around
f50 in the early stage, and it evolves rapidly at a cert
time. It can be judged that the region with the volumeV
overcomes the activation energyf maxV at the transition time.
Such atime delayin the evolution process is denoted asts.
The dependence onV of ts is investigated through severa
simulation runs for various coarse-grained volume. Fig
2~b! shows the lnts versusV plots. These points are obvi
ously aligned, and the slope isL'0.13760.007 (nm23).
According to the conventional theory on fluctuation, t
probability p to overcome the activation energyf maxV is
proportional to exp(2bfmaxV), so thatts is considered to be
proportional top21, that is, lnts}b f maxV. Therefore, the re-
lation L5b f max, is expected to be obtained theoretical
1-3
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The result of the present simulation well satisfies the re
tion.

The simulation in which Eq.~18! is adopted has yielded
two significant results, which are summarized as follows

~i! The quantity lnts depends linearly onV. This indicates
that the saddlepoint energy per unit volume remains cons
regardless of the definition ofV.

~ii ! The theoretical relationL5b f max is well satisfied
when LDt'1/2f 9(fe) is employed. This indicates that th
relation, 2f 9(fe)LDt;1, is an appropriate relation to simu

FIG. 2. ~a! Time evolution of the order parameterf for V
542.9 (nm3). ts denotes the time delay in the evolution process
f. ~b! The lnts vs V plots. The slope of the dashed line is based
the conventional theory on fluctuation.
s.

06010
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late the activation processes correctly. IfLDt'10.0
310210 (m3/J), i.e., 2f 9(fe)LDt'3.37, is arbitrarily used,
L is computed to be 0.11360.003 (nm23); this value dif-
fers from the theoretical value (L50.133). Furthermore,
whenLDt→`, it is expected thatL→0, being increasingly
far from the theoretical value. On the contrary, whenLDt
'0.297310210 @m3/J#, i.e., 2f 9(fe)LDt50.1, is adopted,
L'0.14660.013. Thus, even ifLDt is set at a value smalle
than 1/2f 9(fe), the theoretical relationL5b f max is virtually
satisfied.

The above two facts indicate that the presented formul
valid and can be adopted in the TDGL simulations. As far
we use the formula, we can arbitrarily define the size o
coarse-grained region under some constraints that does
affect the results of the simulations.

IV. CONCLUSIONS

We have presented the formula, Eq.~18!, for the thermal
fluctuation to be used in the time-dependent Ginzbu
Landau simulations and have examined the validity of
presented formula. By using the formula, the results that
yielded by the simulations would be independent of the d
nition of the coarse-grained volume, so that nucleation p
cesses~which are barely addressed in this paper! would be
simulated successfully and typical domain sizes in mic
structures would also be obtained without a proper scalin
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