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Thermal fluctuation for the time-dependent Ginzburg-Landau simulation
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Thermal fluctuation for the time-dependent Ginzburg-Landau simulations is considered on the basis of the
ensemble theory and the fluctuation-dissipation relation. The treatment for evaluating the thermal fluctuation
for a nonconserved system is proposed and the formula for the fluctuation is presented. The magnitude of the
fluctuation depends on the coarse-grained volume and the curvature of the free-energy function at thermal
equilibrium. The validity of the formula is verified by numerical simulation.
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I. INTRODUCTION wheret is the time,L is the relaxation ratécoefficien}, and
0 refers to the thermal fluctuation. The problem is how to
Computer simulations based on the time-dependenactually evaluate the magnitude of the thermal fluctuation

Ginzburg-Landau (TDGL) approach (more widely, the In this paper, we present a formula for evaluating the thermal
phase-field approagthave been frequently made for under- fluctuation for a nonconserved system. Finally, the validity
standing the formation of microstructures in various kinds ofof the formula is verified by solving the Langevin equation.
alloys [1-4], and have successfully reproduced the micro-
structures observed experimentally. Therefore, this approach
is regarded as a powerful method for analyzing the transfor-

mation processes. However, such an approach involves am- \We start from the thermal fluctuation on the basis of the

biguity in evaluating the thermal fluctuation. To the authors’ensemble theory. In thermal equilibrium, the probability for

knowledge, treatment of the thermal fluctuation has not beethe state with the internal enerdyto occur is given by

reported so far; it has been neglected, in particular, for trans-

formation from an unstable phase, or arbitrary small values

have been adopted for that from a metastable phase. Re-

cently, we reported the TDGL-simulation study for explain-

ing the variant-structure formation in the cubic to tetragonawith B=(kT)~* (k is Boltzmann’s constant and is the

(fcc-L1,) transformation of FePd alloy under strd&§. As ~ temperaturgandZ the partition function

pointed out in the paper, the thermal fluctuation plays an

essential role in the transformation kinetics, and the resultant

microstructures in the simulations strongly depend on the  Z= 2, W(E)exp(— BE)= >, exd—BFE)], (4

magnitude of the thermal fluctuation. Therefore, evaluation ! !

of the thermal fluctuation is necessary to perform the predic-

tive simulations. where W(E;) is the number of states in which the internal
Before taking up the main subject, we shall briefly stateenergy equal&; and the summation is performed over iall

the TDGL-simulation method and a problem in the fluctua-The function/(E) is defined byF(E)=E—-TSE), where

tion below. In the TDGL approach for simulating formation S(E) =k InW(E). F(E) has a stochastic meaning, and there-

of microstructures, we divide a system into small partial sysfore, is different from the so-callefiee energydefined by

tems as the coarse-grained regigtie volume of each re- F= —kTInZ. Hereafter, the functiorf(E) is calledthe free-

gion is denoted a$)), define the coarse-grained order pa-energy function

rameter¢(r) atre(), and use the Ginzburg-Landau free- When the size of the system is not extremely small,

Il. FORMULA FOR THE THERMAL FLUCTUATION

P(E)=Z"'exd - BHE)], ()

energy functional of the following form: exd —BF(E)] displays a very sharp peak at the ensemble
K average of the internal enerdg); the summation in Eq4)
£ _ Rs 2 can be approximated by expBF((E))]. Consequently, the
Fio} f dr| f(g(n)+ 2 VoM, @) free energy is given by~ F((E))=(E)—TS(E)), where

F((E)) is the minimum among all#(E;). Therefore,
wheref(¢(r)) is the free-energy function per unit volume of ;5 7(E)/gE=0 must be satisfied aE=(E), resulting in
the Landau type andg is the gradient coefficient which 9 S((E))/d(E)=1/T in thermal equilibrium.
takes account of the excess energy by interfaces. Then, the Here, we consider the fluctuation in the free-energy func-
stochastic TDGL equation for nonconserved system is givefion that is caused by the internal energy fluctuation in ther-
by mal equilibrium. When the internal energy (E)+ SE, the

. free-energy function is expressed &(E)+ SE)=((E)
ey L SF{¢} + 8E) — TS((E) + SE)=F((E)) + 6F. The entropySis ex-
at 5S¢ panded up to the second-order term:

+0(r,t), 2
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d S (6E)? @ T=873 [K]
S((E)+ SE)~S((E)) + (9<E>5E+ HE)? > (5) 20 (T, = 923 [K])
. . . "’E 10 £
Using Eg. (5) and ¢ S({E))/d(E)=1/T, the fluctuation in = max ®
the free-energy function.F, is expressed as 2 0 LN 2N
Yy
T 9[4S (TCy) * -10 v \V
~— — | —— 2> "V 2
OF 2 WE) | B (6E) > (6E)*, ()
-0 05 00 05 1.0

where Cy, is the heat capacity, andrC,) ! indicates the
curvature of the free-energy function Bt=(E). Since the
square average of the internal energy fluctuation in the ca- ® Q=1 (o] Q=27 ()
nonical distribution is given by(SE)%)=kT?C,,, the aver-
age fluctuation 6F) is given by

TCy) ! KT 2
(o7~ T (e = 0 X
2 2
We apply the above relation to computer simulations _J k L

based on the TDGL approach. As an example of the Landau

free-energy function, we deal with that for the fcd.1, -10-0500051.0-10-0.500 0.5 1.0

order-disorder transition previously reportge]. Since the ¢ ¢
transition is first-order, the free-energy function per unitvol- g1 1. (3 The free-energy function for a fdcl, ordering
ume is expressed as system at 873 K. The transition temperatiiés set at 923 K. The
) 4 6 sign of the order parameter indicates the typek f variants.(b)
f(¢)=a(T-Ty)¢p"—be"+ce”, (8)  Distribution functions for different coarse-grained volume,

" ) ) =1 (nn?) and 27 (nm).
whereq, b, andc are positive constants, afg is the insta-

bility temperature of the disordered phase; the details of Eqy gystem, we obtain the fluctuation-dissipati&) relation
(8), e.qg., its coefficients are discussed in Sec. lll. [6] from the Fokker-Planck equatidi].

Figure Xa shows the free-energy function at a tempera- "Tne time variation of a parametes is assumed to be

ture (873 K) below the transition temperaturg (923 K). governed by the Langevin equation,
The thermal-equilibrium distributiorP.{ ) is calculated
using PP

Sr="to

Ped #)=Cexf — Bf($)Q], 9) at

for Q=1 and 27 (n) (C is the normalization constant where the character of the Gaussian thermal fluctuatiés
the results of which are displayed in FigbL Obviously, the expressed as follows{d(t))=0, (6(t;)0(t,))=2D5(t,
fluctuation of the order parameter changes depending on thet,). 7, is the free-energy function for the region with the
size of the coarse-grained volun§®, which indicates the volume( in which the parametep is defined, andL, is the
necessity to clearly define the volume for evaluating the therrelaxation rate for the regiof. When the distribution func-
mal fluctuation. tion is expressed a3( ¢,t), the Fokker-Planck equation cor-
At thermal equilibrium, the order parametgrfluctuates responding to Eq(11) is given by
around the equilibrium value((#0). The curvature of the

3 Fo
W'f’ o(t), (11)

Landau free-energy function dt= ¢, is denoted a$” (). IP(dt) 2 L
Equation(7) indicates that the average magnitude of the fluc- A +————|P(¢,1), (12)
tuation in the free-energy functiof{ ¢){) assigned to each Jt J §* Qop d¢

region equalkT/2; we obtain(5(fQ))=(1/2)f" (e Q{(P
— ) ~KkT/2; that is, wherefQ =7, andL/Q=L,,. If D=(L/Q)kT holds, the
thermal-equilibrium distribution, Eq9), holds. The FD re-
lation, D=(L/Q)kT, guarantees a solution of E¢L2) to
(10 lead to the thermal-equilibrium distribution.
Expressing the derivative of the free-energy functional in
(2), we obtain

— N o
<(¢ (;be) >Q f”((be)ﬂ'

Next, we shall derive a formula for the fluctuation in the Eq.
kinetic equation such as E(). As shown in Fig. ), the
fluctuation of the physical quantities generally depend on the d $(r,t) _ L ( 9fQ

W_KS()’Vzd)

size of a system. Accordingly, being conscious of the size of at Q

+o(r,t). (13
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Note that the volumé) is explicitly displayed in the TDGL  given by ys~K¢2/2Ad and (Ad)3=Q, with Ad the grid
equation. From the FD theorem, the character of the thermalistance of the divided partial systems. If the nucleation pro-
fluctuation is given by cess is simulated, the coarse-grained volume should be de-
fined so as to satisfy a conditidm<(4/3)7rr§.

L
(6(1))=0, (0(t1)0(ty))= zﬁkT‘s(tl_tZ)- (14

Ill. VALIDITY OF THE FORMULA FOR THE THERMAL

It i; emphasized.here that E4.4) that involves the vqlume FLUCTUATION
Q) is the appropriate formula for the thermal fluctuati®im
Eqgs.(2) or (13). In this section, we examine the validity of E(L8) by

We shall consider the discrete equation with the time in-solving Eq. (15 numerically. The term of the gradient en-
crementAt next. The discrete equationatorresponding to  ergy is not considered hetee., Ks=0); we observe not the

Eqg. (13) is written as nucleation process, but the process of overcoming the
saddlepoint energfmax Shown in Fig. 1(a). Note thatf 5 IS
LAt 9fQ [+t the free-energy maximum characterizing the first-order tran-
P(t+AD =)~ Q0 9¢ * . dsé(s), (19 sition and is essentially different from the work required for

the formation of a nucleus. Since the gradient energy is zero
where the gradient term is omitted. From Ei), the vari-  (i.e., there is no shrink effect by surface tengion this
ance of the integration of the Gaussian thermal fluctuationtnodel, even a infinitesimally small domain can stably exist
o?(At), is calculated as once it changes into an equilibrium state via the saddlepoint
from a metastable state. What is checked here is whether
5 (At tat , LAt such an activation process can be simulgthgsically cor-
o (At)=J't dsft ds'(6(s)6(s »ZZTKT- rectly, that is, the activatiofisaddlepointenergy for a region
(16) with the volume() becomes equal tb,,,,{2. The activation
process is analyzed in the light of the conventional theory on
Equation(16), which involvesQ and At explicitly, should  the thermal fluctuation.
be adopted in the TDGL simulations. The definitiofts We use the free-energy functi¢m the form of Eq.(8)]
physical limitation$ of At and ) shall be stated below. per unit volume for the fcd/l, transition: f(¢)
First, we address the definition dft. Comparing Eqs. = (RT/V)[0.746KT/v —0.708)p?—0.497¢* + 0.4754°],
(10) and(16), we obtain the following significant relation, ~where¢ represents the tetragonality of th&, phase\V,, is
the volume per unit mole, an® is the gas constarjt]. In
oz(At)=2f"(¢e)LAt<(¢—¢e)2)“, a7 this phase transition, the reduced transition temperature has
. o o . been calculated to b&T,/v~0.882 @ is the effective
which presents a criterion for definingt. Suppose thaktis  atomic interaction energyfrom Monte Carlo simulations
set at a value much larger than the relaxation time [g]. we set the parameters;,= 923 (K) and V,,=8.32
~1LLf"(e), the relaxation process that should occur natu-x 10-¢ [m®/mol]. Temperature for the simulation is set at
rally during At is inevitably neglected in the simulation, so T=g823 (K), i.e., kT/v~0.786. At this temperature, the
that ¢(t) becomes out of physically meaningful range, e.g..saddlepoint energy i$.,~1.51x10° (J/n?), i.e., Bfmax
the range shown in the abscissa of Figg)1As found from =g 133 [nm~3], and the curvature of the free-energy func-
Eqg. (17), such a matter can be avoided necessarily when th§on s ()~ 1.68x 10° (J/n?). On the basis of Eq19),
time increment is chosen so as to satidfi<1/2Lf"(¢e).  we use LAt~1/2f"($)~2.97x 10 1° (m*/J) and assign
not performed effectively; a lot of iterative calculations are ~ g 75x 107390 to the thermal fluctuation. The time incre-
needed for completing a simulation run. Therefore, it is apment is set at\t=1 (s') (s’ denotes the unit of time used
propriate thatAt is defined so as to satisfy the relation jn the simulation.
2t (L AL~1, L., foro?(At) to be of the same order as  As seen in Fig. @), the parameter fluctuates around
((¢= e )a - Thus, in the TDGL simulations for noncon- 4—0 in the early stage, and it evolves rapidly at a certain

served systems, we can adopt the following formulas: time. It can be judged that the region with the volule
overcomes the activation energy,,() at the transition time.
At~ 1 2(At)~ kT (18) Such atime delayin the evolution process is denotedtas
2|_f"(¢e)’ f//(¢e)Q' The dependence o of tg is investigated through several

simulation runs for various coarse-grained volume. Figure
There exists arbitrariness in the determination of the2(b) shows the Irig versusQ) plots. These points are obvi-
coarse-grained volum@, but at least, we should take notice ously aligned, and the slope &~0.137+0.007 (nm 3).
that the volume) is to be smaller than a typical domain size, According to the conventional theory on fluctuation, the
for example, the specific wave length in the spinodal decomprobability p to overcome the activation enerdy,,{) is
position or the critical nucleation size, etc. In the case ofproportional to exp{ Bf,.{}), so thatts is considered to be
nucleation process, the critical radius of a spherical nucleuproportional top ™%, that is, Intsx Bf 2. Therefore, the re-
is given byr.=—2vy./f(¢.), wherey,is the surface energy lation A= Bf. IS expected to be obtained theoretically.

060101-3



RAPID COMMUNICATIONS

TETSU ICHITSUBO AND KATSUSHI TANAKA PHYSICAL REVIEW E63 060101R)
10| @ late the activation processes correctly. LfAt~10.0
038 Q=429 [nm?] X1071% (m®J), i.e., X" (pLAt~3.37, is arbitrarily used,

206 A is computed to be 0.1330.003 (nm 3); this value dif-
Z 04 fers from the theoretical valueA(=0.133). Furthermore,
0.2 whenLAt—oo, it is expected that\ — 0, being increasingly

0.0 far from the theoretical value. On the contrary, whHeft
o 10 2 30 F4 s0a0 ~0.297x 107 1° [m%J], i.e., 2f"($JLAt=0.1, is adopted,
Time ) ’s A~0.146+0.013. Thus, even i At is set at a value smaller

than 1/Z2"(¢e), the theoretical relation = Bf . IS Virtually

satisfied.

10 The above two facts indicate that the presented formula is
< valid and can be adopted in the TDGL simulations. As far as
s we use the formula, we can arbitrarily define the size of a

coarse-grained region under some constraints that does not
affect the results of the simulations.
00 10 20 30 40 50
Q (nm?) IV. CONCLUSIONS
FIG. 2. (a) Time evolution of the order parametet for Q We have presented the formula, Eg8), for the thermal

=42.9 (nn?). tydenotes the time delay in the evolution process offluctuation to be used in the time-dependent Ginzburg-
¢. (b) The Intyvs Q plots. The slope of the dashed line is based onLandau simulations and have examined the validity of the
the conventional theory on fluctuation. presented formula. By using the formula, the results that are
yielded by the simulations would be independent of the defi-

The result of the present simulation well satisfies the relanition of the coarse-grained volume, so that nucleation pro-
tion. cessegwhich are barely addressed in this papeould be

The simulation in which Eq(18) is adopted has yielded simulated successfully and typical domain sizes in micro-
two significant results, which are summarized as follows: structures would also be obtained without a proper scaling.

(i) The quantity Irts depends linearly of). This indicates
that the saddlepoint energy per unit volume remains constant
regardless of the definition dd.

(ii) The theoretical relatiom\ = Bf . is well satisfied We thank Professor M. Koiwa of Kyoto University for
when LAt~ 1/2f"(¢.) is employed. This indicates that the proposing this problem. We are grateful to Doctor Y.
relation, Z" (4o LAt~1, is an appropriate relation to simu- Yamazaki for many valuable discussions.
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